Expired Study
This study is not currently recruiting Study Participants on ClinicalConnection.com. If you would like to find active studies please search for clinical trials.

Charleston, South Carolina 29414


Our primary aim is to determine whether and how muscle architecture of the quadriceps muscles in cerebral palsy (CP) adapts to two separate training programs: traditional strength training (ST) vs. velocity-enhanced training (VT). For the ST group, we hypothesize that muscle size will increase in conjunction with strength. For the VT group, in addition to the above, we hypothesize that fiber length will increase with measures of muscle power. We also hypothesize that walking velocity will improve in both groups but that knee motion and step length will improve only with VT.

Study summary:

Cerebral palsy (CP) is the most common physical disability originating in childhood, occurring in 2-3 per 1,000 live births. Although the primary deficit in CP is injury to the brain, secondary impairments affecting muscle function such as weakness, contractures, and spasticity are often far more debilitating and lead to worsening disability throughout the lifespan. Some have suggested that these muscle changes in CP may be irreversible; however, it is now known that muscles are one of the most 'plastic' tissues in the body. In fact, recent evidence suggests that gross muscle hypertrophy and architectural changes within muscle fibers can occur as early as 3-5 weeks after resistance training in healthy adults. It is also unknown how effectively muscles in CP can adapt to training stimuli that target specific muscle architectural parameters, such as fascicle length and cross-sectional area. These parameters have been observed to be decreased in CP, suggesting loss of sarcomeres in-series (fiber shortening) and in-parallel (muscle atrophy). We propose here that specific training-induced muscle architectural adaptations can occur in CP, leading to improved motor function.


Inclusion Criteria: - Diagnosis of cerebral palsy - Gross motor function classification system levels I, II, or III - Ages 7 to 17 Exclusion Criteria: - Orthopedic or neurosurgery within the past year - Botulinum toxin injections within the 4 months prior to the study



Primary Contact:

Principal Investigator
Noelle G Moreau, PhD, PT
Medical University of South Carolina

Backup Contact:


Location Contact:

Charleston, South Carolina 29414
United States

There is no listed contact information for this specific location.

Site Status: N/A

Data Source: ClinicalTrials.gov

Date Processed: October 09, 2019

Modifications to this listing: Only selected fields are shown, please use the link below to view all information about this clinical trial.

Click to view Full Listing

This study is not currently recruiting Study Participants on ClinicalConnection.com. The form below is not enabled.